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EVALUATION

This contract refined a previously operable programming language
specification system into a more workable and more efficient system that
will be more acceptable to the general software world. This specification
system called SEMANOL (76), (an evolutionary update of SEMANOL (73)), since
it is uniquely programmable and executable on a computer, allows side-by-side
rigorous comparisons between the language specifications and the compiler
written against it. While this is a very time-consuming task, even with the
increased efficiency (approximating a 30-fold improvement), the addition of
a trace facility output and a broad-resume capability allows the comparisons
to be done on an interrupted basis, for more user convenience and completeness.
Included in this effort was an enlarged rewrite of JOVIAL-J3 from the original
SEMANOL to this newest version. In so doing it included implementation-
dependent features such as COMPOOL and LOC that were not previously included
and, thereby, laid a firm foundation for its formal use in the Higher Order
Language JOVIAL facility, should it be so needed. SEMANOL (76) specification
format will now be frozen as a stable proudct for continuity in future use.
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INTRODUCTION

SEMANOL is a TRW system of formally describing computer programming
languages. Its formalism provides a descriptive precision that, at least in
practice, cannot be obtained by the use of conventional, natural language,
descriptions of semantics. Its formalism also permits any desired degree
of descriptive completeness to be realized. Thus SEMANOL is meant to provide
a means of alleviating many of the traditional prbblems related to programming
language use and control. Such problems include:

1. The need to answer questions about a programming language through
experimentation. Conventional reference documents for a language processor
are sometimes incomplete or vague about the effect of executing a given
language feature in a certain situation. The normal method of determining
what the semantics are in such a case is to write a test program and observe
what it does when executed. This is a tedious and difficult task, especially
if done with the care it deserves, that ought not to be required. The
results of such a test process must also be viewed with caution; since one
is dealing with a poorly documented feature, its implementation may well
stem from a poor specification and so contain a few "surprises".

2. The difficulty of transferring programs from one computer to
another or even between different language processors for a single computer.
The lack of uniformity in language is partly traceable to differences in
underlying hardware operation and data representation, and so is essentially
unavoidable. However, formal methods can permit the influence of such
machine dependencies upon semantics to be made explicit, something ordinarily
not done. The source of many other language differences is really a
consequence of language implementors interpreting the.design document in
varying ways because of ambiguities in the natural language specification.
This is a legacy of inadequate specification that formal methods directly
seek to solve.
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3. Compiler implementations that deviate from the customer's
expectations. This is a problem in software procurement generally and,
in the case of compilers, is due to programming language specifications
being incomplete and ambiguous. Thus a variety of interpretations may arise
that have some merit, with the particular problem that an implementor may
make an interpretation different than the customer's interpretation without
even being aware that something else might be meant. The restricted nature
of programming languages suggests that improvement in this part of the soft-
ware world should be possible.

4. The virtual impossibility of formulating standard definitions of
programming languages that can truly serve as reference standards. A formal
metalanguage is needed for precision and unambiguous interpretation, as
prose text has been found unsuited for this task. The grave difficulties of
implementation-defined aspects of a programming language also require a
formalism in order that their intended existence and, perhaps, constraints
upon their implementation may be made clear. A better system of definition
can pay great dividends in standardization efforts.

These problems are familiar to most people who deal with programming
languages and their processors, as are many other difficulties, and their
i11 effects upon software production are recognized (although often under-
estimated).

The SEMANOL system has been under development for several years and
has enjoyed RADC support throughout. Its ability was established in earlier
contracts, with the result that this project was undertaken with the intention
of improving the SEMANOL system so that it could become a more useful tool
in USAF programming language control. These improvements were designed to
increase the operational convenience of the SEMANOL system, to provide
faster computer execution of the system, and to expand the capabilities
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of the metalanguage. The specific improvements made in this project include

the following: |
1. The definition of an improved semantic definition metalanguage.

This metalanguage, dubbed SEMANOL(76), is an extension of SEMANOL(73),

and reflects our increased understanding of formal semantic description.

The changes made were based on our experience in using SEMANOL(73) to define

JOVIAL(J73) and Universal CMS-2, and our analysis of JOVIAL(J3) requirements;

i thus they constitute an evolutionary refinement to the previously implemented

B metalanguage. The SEMANOL(76) metalanguage is believed to be easier to read

and write than its predecessor, while also giving better processing

efficiency through its inclusion of several new high level operators.

2. The implementation of an extensively revised Interpreter program
that offers much better processing performance than did the earlier versions.
‘ 0f course, the new Interpreter program also handles the SEMANOL(76) meta-

g\ language. The processing efficiencies came from a certain amount of
redesign, especially to make effective use of the Multics operating system
upon which the Interpreter now operates; the use of a new intermediate
language form; and the use of better coding techniques. A very substantial
performance improvement was thus obtained.

3. The provision of a new user interface that supplies a convenient
form of incremental translation and a powerful interactive metaprogram
test system. The test system offers a flexible trace facility and a
useful break capability; together, they provide users with a convenient,
effective way in which to test formal specification metaprograms. User
efficiency is thereby enhanced.

A more useful and acceptable system of semantic description has
thus been created with the development of SEMANOL(76).
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The improved SEMANOL(76) system was then used in the preparation of a
comprehensive formal specification of JOVIAL(J3). This specification
includes features such as COMPOOL, LOC, and overlay, and so includes
programming language elements that are commonly left to be implementation
defined. Storage allocation, arithmetic, and other such machine-determined
details are likewise part of the specification that was written. The
preparation of this specification raised various issues, especially several
related to the best way with which to deal with flow control semantics and
storage modeling in an involved language 1ike JOVIAL(J3). That is, JOVIAL(J3)
has its own unique features for which it is very difficult to divine sensible
interpretations, particularly if one attempts to provide a generalized
definition, as we did. This effort to achieve generality, and not just offer
a personal definition, took a substantial amount of effort and was only
partially successful; there remain open questions about how best to describe
certain semantics. :

The final accomplishment of this project was the presentation of a
training course in the SEMANOL(76) method. Extensive materials were
developed and used in the presentation of a three day training course
given at RADC. The course introduced the SEMANOL (76) system and explained
the ways in which it could be used. It provided technical details about
the SEMANOL(76) metalanguage and the way in which we feel it should be
employed when writing programming language specifications. A basis for
expanding the guild of SEMANOL(76) users, and hence of SEMANOL(76) use, was
thus established.

The new SEMANOL(76) metalanguage, the more efficient SEMANOL(76)
Interpreter, the new Interpreter user command features, and the availability
of training materials, all products generated in performance of this
contract, together provide a greatly improved system of formal semantic
4 description. Additionally, the SEMANOL(76) specification of JOVIAL(J3)
provides a vehicle for practical evaluation of the SEMANOL(76) method as




well as supplying a basis upon which to construct an accepted, precise,
programming language standard for JOVIAL(J3). SEMANOL(76) now is a useful,

working, tool that is suitable for practical applications in programming
language development and control.




THE NATURE OF THE SEMANOL SYSTEM

SEMANOL is intended for use in describing (procedural) programming
languages. A specification written in the SEMANOL metalanguage is meant
to provide an exact and complete definition of a programming language
that is comprehensible to a suitably trained reader. That is, SEMANOL is
designed to supply people with a basis for communication about programming
languages that is more precise than commonly employed description methods.
Additionally, the formality of the SEMANOL metalanguage permits operational
use of the specification to be made upon a computer.

The SEMANOL specification method is algorithmic because it is felt
that the semantics of programming languages ought to be explained in this way.
That is, semantics are concerned with explaining how something happens
and not just in characterizing an input-output relationship. Certainly
this is the way in which language designers, compiler writers, and
application programmers generally view the semantics of a programming
language. Having a direct correspondence between the formal, operational,
SEMANOL expression of language semantics and a reader's intuitive conception
of a language yields a specification method that can be easily understood.
An algorithmic method also permits language details, such as those specific
to a given implementation, to be described exactly when desired.

The SEMANOL method considers a programming system, S, to be defined
by S = (P, I, T, &) where

P = The set of programs which can be expressed in the
programming system.

I = The set of input values.

T = The set of output traces. The trace is an ordered
record of significant actions (such as assignment)
that are performed by the program as it is executed;
it is the visible manifestation of performing the algorithm
that is the operational SEMANOL specification of semantics.




¢ = The semantic operator. This operator, given as §: P x I-»T,
is considered to define the "meaning" of a program.

P, I, and T are each sets of strings which are specified by & and whose
individual members will be denoted by the corresponding lower case letters
(i.e., peP,iel, teT.). The effect of executing a given program, p,
can then be denoted in terms of the semantic operator by

o(p,i) = t

Thus ¢ specifies the trace produced by any program in the system when
that program is executed with any input value sequence. The SEMANOL meta-
language is used for programming the semantic operator, thereby providing a
method for formal specification of a programming language. Since SEMANOL is
itself a programming language, it also belongs to a programming system. To
differentiate between these two systems, we will use the subscript j to
identify elements of the programming system being defined by a SEMANOL program
and the subscript s to identify elements of the SEMANOL system. The semantics
of a defined language program, pj, are then expressed by

o.(pssis) = ¢,
Pseig) =t
The semantic operator for a defined language is expressed as a SEMANOL
program, p., which in turn is interpreted by a semantic operator for the
SEMANOL programming system, 0. Thus we have
¢S(p5'(pj’ij)) = ¢j(pj’1j) a tj

and a formal definition of a defined language is provided by P+ The SEMANOL
semantic operator, °s’ is defined in the SEMANOL Reference Manual and has been
implemented by the SEMANOL Interpreter computer program.




This general view of language definition is shown graphically in
Figure 1. As shown there, these levels of semantic specification correspond
to defining a virtual machine for SEMANOL and, based on that, one for the
language being defined.

A formal SEMANOL specification of a programming language is a metaprogram;
a metaprogram for processing a source language program text written in the
programming language being defined. The algorithm expressed by the SEMANOL
metaprogram describes a way in which the intended effect of executing any
program in the defined language can be realized. That is, the algorithm is
an interpretive definition of semantics or, alternatively viewed, the meta-
program describes an interpreter for the defined programming language.

Now this metaprogram could certainly be written in more conventional
programming languages, such as JOVIAL or Fortran; however, other programming
languages, even those meant to do string processing, were not designed with
formal semantic description in mind. Therefore, semantic interpreters would
be difficult to write in these languages and, more importantly, the inter-
preters so expressed would be very difficult to understand. This lack of
comprehensibility means these interpreters would serve poorly as specification

standards. Contrarily, SEMANOL is a metalanguage specifically

designed, and repeatedly refined, for expressing the semantics of programming
languages. Because of this, an interpretive specification stated in SEMANOL
is relatively easy to understand; the keywords and structure of SEMANOL,
coupled with the use of proven specification conventions, provide a "natural-
ness" to the SEMANOL metaprogram that is not available with other interpreters.
Precision is therewith combined with readability through the use of SEMANOL.

The SEMANOL metalanguage emphasizes high-level expressiveness. Where
possible, "conventional" notation, as found in mathematical exposition and in
other programming languages, is employed so that a reader's intuition will
generally lead to a correct interpretation of SEMANOL code. The semantics
of defined language execution are described by the use of SEMANOL in terms of
parse trees and elements of the original source program text, and so can be
directly understood by the reader.
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The SEMANOL system has been implemented in the SEMANOL Interpreter
program. The SEMANOL Interpreter accepts a SEMANOL specification of a
programming language and uses that input specification to realize the semantic
effect of (i.e., to execute) programs written in the language thus defined.

By virtue of the Interpreter, SEMANOL specifications can themselves be tested
and debugged. Furthermore, an operational standard for the defined language
is thus created.

The original SEMANOL Interpreter was written for the HIS-635 computer
operating with the GCOS III software set. The Interpreter was later converted
to the HIS-645 Multics system and subsequently to the HIS-6180; it presently
is operational with HIS-6180 Multics. This programming has been done almost
wholly in Fortran with assembly language code used only for a few functions
which could not be done in Fortran (i.e., half word operations). (The assembly
language routines were later redone in PL/1 when the transition to Multics
was made.) The Interpreter contains about 20,000 Fortran statements.

The operation of the elements that constitute the SEMANOL Interpreter
system is shown in Figure 2. The broken line encloses the SEMANOL Interpreter,
which can be seen to actually consist of two Toosely connected programs
identified as the Translator and the Executer. The Translator processes the
SEMANOL description of a programming language and so generates an intermediate
code form known as the SEMANOL Internal Language (SIL) file. This translation
phase also tests the SEMANOL description for its syntactic correctness, much
as a conventional compiler would do. The SIL representation corresponds to
a list of operators and operands, and direct transfers, that are used to
control the Executer. The Executer program is essentially a stack oriented
processor that then interprets the SIL code and so performs the operational
interpretation of a program in the defined language. As shown in Figure 2,
this interpretive processing commonly includes the reading of input and the
production of output at the direction of the defined language program being
processed. Note that the SIL code is presently recorded in a character format
in order to (1) minimize the interface requirements upon the Translator and
Executer and (2) permit the SIL file to be read and manipulated by the standard

10
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editing facilities of Multics. These attributes of the SIL file were very
helpful throughout the SEMANOL Interpreter development period.

The discussion of this section has emphasized the use of SEMANOL in
creating specifications of programming languages for which operational
results can be achieved by use of the Interpreter computer program. We have
emphasized this operational possibility of SEMANOL because it is useful, is
rare among semantic description methods, demonstrates SEMANOL's ability to
precisely define all the factors that influence semantics, and is typical of
what we have done. Of course, an operational specification is a language
processor implementation and, 1ike any other computer program, must be rather
complete if it is actually to be used to generate results. For instance,
some form of arithmetic must be defined so that the results of numeric
expression evaluation can be determined. However, the SEMANOL metalanguage
can also be used to write specifications meant only for publication and,
when so used, the resulting specifications need only be as formally complete
as the writer wishes. The parts given in SEMANOL will be precise, while
those given otherwise can be less complete and precise. For example, the
evaluation order for expressions might be given an exact SEMANOL metalanguage
formulation, while the semantics of the subordinate add function might be given
in the form of uninterpreted prose comments. Such a specification cannot be
operationally tested, but it can still provide a precision missing in ordinary
conventional specifications. Thus the SEMANOL metalanguage can be useful for
purely publication purposes; its use does not force one to create a more
complete specification than is wanted, but it does provide clarity and a
framework into which increasing detail can be added as appropriate.

12




THE _TASKS PERFORMED

A variety of things were done to the existing SEMANOL(73) system in
order to improve its usefulness and acceptability to users. The changes
accomplished in this project expanded the capabilities of the system, made
it more convenient to use, and substantially improved its execution
efficiency. The system was also explained to possible users in a compre-
hensive training course that was given. In addition to general improvements
to the system, the new SEMANOL(76) system was also used in preparing a
formal specification of the JOVIAL(J3) programming language. Thus an
improved system of semantic description was both developed and applied in
performance of this contract. The manner in which this was done is
described in what follows.

It should be noted that performance of these tasks required extensive
use of the Multics system located at RADC. The Multics system was generally
reliable and available when needed, and RADC assistance was always helpful
and competent. The overall service was considered good.

SEMANOL(76) Developed

As a consequence of using SEMANOL(73) to describe JOVIAL(J73) and
Universal CMS-2 in earlier contracts, and as a result of language analysis
generally, it was felt that certain changes to the metalanguage would
strengthen it. The changes were intended to make the metalanguage more
naturally conform to the semantic description conventions that had
evolved over past projects; specifications could thus more easily be read
and written. Since the metalanguage was already a programming language
of wide power, its descriptive domain was not extended by these changes.
However, the convenience of semantic description was meant to be improved.
These considerations thus led to the design of the SEMANOL(76) metalanguage.

13




In general, the changes and additions made to SEMANOL(73) in order
to create SEMANOL(76) are individually rather minor, with many being
essentially nothing more than syntactic variations of existing constructs.
However, the cumulative effect was substantial and the metalanguage was
changed more than we had originally intended. As always, the goal was
to create a "final" version, so that the stability needed for SEMANOL(76)
use in programming language standardization and control activities could
be attained. Since a spark of invention remains, I do not imagine that
we have succeeded in reaching that objective totally, but we have created a
better metalanguage.

The most substantive metalanguage changes made to SEMANOL(73) were
in the areas of procedure definition, invocation control, and arithmetic.
In the case of arithmetic, the semantics of integer arithmetic were
generalized to remove an existing host computer implementation dependency,
while floating point arithmetic was simply deleted from SEMANOL(76).
Specifically,

1. Integer arithmetic was re-implemented in SEMANOL(76) so that it
operates upon integer operand strings of any length; that is, a true string
arithmetic is provided. This change removed the SEMANOL(73) limits upon
integer-range that were imposed by the past use of HIS-6180 double precision
arithmetic. This extension now allows arithmetic of arbitrary operand
lengths to be easily specified; SEMANOL(76) can thereby conveniently
model a greater variety of real and abstract computers than could its
predecessor.

2. Floating point constants and floating point arithmetic were
then deleted from the metalanguage. In its SEMANOL(73) form, floating
point arithmetic operand range and significance were limited. To convert
floating point arithmetic to a completely machine independent form,
as was done for the integers, would have been a lengthy task. It was
considered unjustified since floating point arithmetic in defined languages
can be conveniently modeled by integers (as is our accepted practice).

14
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3. The new arithmetic of SEMANOL(76) caused the deletion of #R+, #R-,
#R*, #R/, #FLOATING, #RNEG, #ENTIER, #NORMALIZE, #ROUND, and #HALF-ADJUST.
The operators #ABS, #SIGN, and #CONVERT now apply only to integers.

These changes gave SEMANOL(76) an improved integer arithmetic, while
deleting from the metalanguage the parameterized floating point arithmetic
that was no longer being used.

The other major change made was the deletion of the abnormal return
option from procedure definitions. SEMANOL(73) provided a #RESUME(;n)
option that allowed return to be made from an invoked procedure to the
nth preceding procedure in the active call sequence. This feature had
been used in past specifications (e.g., JOVIAL(J73))solely when describing
the control semantics of the programming language being defined. For
this, it had been useful and had provided descriptive simplicity.
Unfortunately, the semantics of #RESUME(;n) were themselves extremely
complicated in SEMANOL(73). Thus a feature of a metalanguage designed
to provide a clarity of semantic definition was itself likely to be mis-
understood. While the issue of where one puts complexity is open to
individual choice, the design of SEMANOL is based on the use of keywords
and primitive ideas that are themselves simple and easily understood. By
that criterion, a complex #RESUME(;n) feature was undesirable. It was
thus removed from SEMANOL(76). The normal return option previously given
by #RESUME(;0) was then replaced with #RETURN-WITH-VALUE. This new keyword
also caused procedure definitions to return a value directly, and so corrected
what had become recognized as a deficiency of #RESUME(;0). Precedure
definitions had previously only been able to return values as side effects,
and this had led to the generation of code that was less clear than it
should have been.

A variety of lesser changes were also made as follows;

15




1. #PARENT-NODE and #ROOT-NODE were added to SEMANOL(76) so that f
parse trees can be traversed in an upward direction (they could already
be traversed in a downward direction by use of #SEG). #PARENT-NODE returns é
the immediate antecedent node, while #ROOT-NODE returns the topmost (i.e.,
starting) node in the tree specified. These additions generalize the
tree walking capability of SEMANOL(76) and can be especially useful in
providing a simplification of syntactic components. Improved efficiency
can also be realized through use of these new features.

2. A #SEQUENCE-OF-ANCESTORS-OF constructor was added to form a
sequence of parent nodes for a given node. That is, the sequence is
formed by traversal of the parse tree from the root node to a specified
point.

3. #REVERSE-SEQUENCE was added to SEMANOL(76) and it has the obvious
meaning; to create a sequence whose elements are an inversion of the specified
sequence. The availability of this keyword can improve the efficiency of
SEMANOL(76) programs.

4. A #WHILE statement was added to the control statements of SEMANOL(76);
its effect is conventional. This addition improves the expressiveness of
SEMANOL(76) with regards to loops (since only the #FOR-ALL and #IF were
offered previously).

5. An inclusion relation was added that determines if an element is
a node in a specified parse tree or not. This is done by means of the #IS
#NODE-IN, or #IS-NOT ENODE-IN, relations. This feature enables testing
for a node directly; formerly, a sequence of nodes would have had to be
formed and the sequence then searched. Simplicity and efficiency are
the products of this change.
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6. A #FOR-ALL relation was added; this new feature complements the
#THERE-EXISTS relation and so provides the ability to more simply express
a much wider range of quantified relationships. This was a very natural
extension to the SEMANOL(73) metalanguage.

7. #INPUT was changed so that it now reads the totality of program
input (e.g., to the end-of-file) rather than one line at a time. This
change means that the notion of "line", which is a characteristic of the
programming language being described, is given explicitly in the SEMANOL(76)
specification rather than being given a single definition by Interpreter
convention. The information accepted by #INPUT must be in a standard Multics
ASCII character format representation and so is capable of being created
easily.

8. #OUTPUT was changed so that it simply concatenates a given string
onto the current output string segment; it previously wrote fixed length
strings on the standard output file. This change requires that the line
terminators, and other print control codes, be inserted into the output
string by explicit SEMANOL(76) metaprogram action. The ability to generate
variable length output strings can simplify output formatting greatly, while
also making the notion of a "line", as with #INPUT, a part of the SEMANOL(76)
specification of a programming language. The output string is in a standard
Multics ASCII character representation so that actual listing of the output
string is easily done by an independent utility program; Multics already
f has the needed facilities for doing this. (Automatic listing of this j
I output after Interpreter processing can be accomplished by the use of
appropriate stored procedures.)

9. #GIVEN-PROGRAM was extended slightly so that it can be invoked more
than once. However, it still reads only one program string, with the result
that all invocations return the same value; i.e., the program string or
#NIL, if there is no program string. The input string to #GIVEN-PROGRAM
i must be in standard Multics ASCII character format (as with #INPUT) and
so may include non-printing characters such as carriage returns (CR) and
line feeds (LF).
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10. The method of describing strings was altered by the introduction
of a uniform "escape" mechanism to deal with the representation of non-
printing ASCII characters and single quotes within strings (strings
continue to be delimited by single quote marks). Embedded quote marks
were previously denoted by #L', #R', #LL', and #RR' conventions; this
was dropped. Instead, square brackets are used to identify characters
which cannot stand for themselves in strings; for example, *ABC[']D' rather
than the older #L'ABC'D#R'. This new convention also allows non-printing
ASCII characters, such as carriage returns, to be represented by multi-
character names, but treated as the single characters they stand for. Now,
a line of output may appear in a SEMANOL(76) program as 'THIS IS A TEST
[CR]' while printing as THIS IS A TEST on a terminal line. A1l non-printing
ASCII characters are provided in SEMANOL(76) with their standard abbreviated
names. Note that these multi-character representations are mapped onto
single characters (in the range 0-127) when carried in input-output files.

11. #EXTERNAL-CALL-OF was redefined to accept a sequence of strings
as an input argument and to produce a string as the output value. The
interface to external functions was implemented, for the first time, in
performance of this contract.

12. #TCOPY was deleted. It no longer was used by the current technique
of describing the semantics of control in a defined language.

13. The substring extractor operator #WORD-BETWEEN-FIRST...#AND-NEXT
was deleted; it had not been used.

14, The tracing options, #TRACE-ON and #TRACE-OFF, are no longer part
of the metalanguage; extended tracing options are provided with SEMANOL(76)
but their activation is now accomplished by user commands (as discussed
later).
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15. #SPACE had been used to denote (1) the string consisting of one
space character and (2) the set having as its only element a string of one
space character. This second meaning of #SPACE was assigned to a new key-
word #SPACESET, with #SPACE retaining just its first meaning. The SEMANOL(76)
metalanguage was thus clarified.

16. #EMPTYSET was added to the syntax set-constants.

The new SEMANOL(76) metalanguage was used in this project to describe
the JOVIAL(J3) programming language (and in a related contract, F30602-76-
C-0245, to describe Minimal BASIC). This experience confirmed the
desirability of making the SEMANOL(76) changes, although the influence that
removal of the #RESUME(;n) feature would have upon describing JOVIAL(J3)
control semantics was greatly underestimated. The previous semantic
control models developed for JOVIAL(J73) and UCMS-2 could no longer be used,
and the design of a new control model for the complicated JOVIAL(J3)
programming language turned out to be very difficult. It is clear that

this particular change m:de the writing of the JOVIAL(J3) specification
far more difficult, but it is hoped that the result is more under-
standable to the reader than it would have been had #RESUME(;n) been
used. Since realization of that hope is uncertain, it is possible

that re-definition of #RESUME(;n), rather than outright deletion, might
have been a better course. Further application and analysis of
SEMANOL(76) will be needed to resolve that issue.




A variety of additional changes were made whose effects are primarily

syntactic or, at least, rather modest. A reasonably comprehensive 1ist of
them follows;

1. The #AND operator was added. This operator is exactly the same
in function as the '&', which is retained, but its inclusion does provide
a more uniform set of Boolean operator names.

2. The syntax of enumerated sets was simplified s1ightly by requiring
the use of the "x" wherever "[" could have appeared and ">" wherever "]"
was allowed. These two notational forms were previously equivalent except
in expressions involving #S-, where the [] form was required, so uniformity
of notation is now realized. This change also permits the square brackets
to be used in the revised form of string denotation described earlier in
this section.

3. The syntax of string concatenation was restricted slightly by
disallowing the #CN(al)...(an) form; #CW is now solely a binary operator.

4. The syntax of procedural definitions (i.e., #PROC-DF) was
relaxed slightly in that the procedure body need no longer be included
within #BEGIN, #END delimiters.

5. An extension of the permissible ordering of the sections of a
SEMANOL program was made to allow the option of placing the <Control-
section>. before the <Semantic-definition-section>.

6. The previous #B+ was replaced with #BOR, #B- with #BXOR, and
#B* with #BAND. The new forms are thought to be more descriptive of the
operations performed than were the older keywords. The semantics were
also changed in that leading zeros are no longer trimmed from the results
produced by these three operators.




7. The syntax of control statements was changed slightly in that
the '#.' terminator is no longer used; the #. was retained elsewhere,
however.

8. The syntax of #INPUT and #OUTPUT was abbreviated slightly by
deleting the #FROM and #TO phrases respectively. These phrases had no
effect since standard files are always used.

9. The syntax of the #FOR-ALL clause was altered so that (1) its
application to sequences could be more directly expressed and (2) it uses
the newer notation for unbounded intervals.

10. The #C options for expressing set concatenation were deleted;
these forms had become extraneous.

11. The #COMMENT keyword was dropped since the use of the alternative
double quotes has been exclusively adopted (e.g., "This is a comment").

12. The syntactic classification of #UNDEFINED was changed, with the
result that #UNDEFINED need not be parenthesized.

13. The syntax of sequence extraction was enlarged so that bounded
intervals could be specified. This change makes SEMANOL(76) somewhat more
uniform and also removes the only cases in which the #MIN and #MAX operators
had been used. As a consequence of this, the #MIN and #MAX operators were
dropped from SEMANOL(76).

14. #FIRST-CHARACTER-IN and #LAST-CHARACTER-IN were added to the
substring extractor operators. These additions add no new capability, but
they are slightly more readable then the previous forms. They are also
more efficient than the previous equivalent forms.
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Interpreter Efficiency Improved

The two major computer programs that form the SEMANOL Interpreter program-
ming system, the Translator and the Executer, were conceived and originally
implemented as part of a research project in formal programming language
description (F30602-72-C-0047). Consequently, they were designed for ease of
development and simplicity of modification; efficiency was not deliberately
ignored, but it certainly was not a primary design factor. In addition, the
original programs were written for a HIS-635 computer using the GCOS software
product set then provided at RADC. This computer system was subsequently
replaced with a succession of Multics systems and Fortran compilers, and the
SEMANOL Interpreter was correspondingly converted to operate upon these
new systems. However, these conversions were performed as simply as possible
and with little attention to processing efficiency. Thus the SEMANOL Inter-
preter had evolved into a highly reliable set of computer programs that was
recognized to be somewhat inefficient. One goal of this project was then to
improve the efficiency of this system.

The most significant changes made in the pursuit of better efficiency
are described in what follows. It should be observed that changes made for
efficiency were often done concurrently with changes being made to support
the new SEMANOL(76) metalanguage; the two issues are not entirely separable.

SIL Format Redesigned - SIL code is generated by the Translator program from

SEMANOL program text, and is subsequently used to drive the Executer program;
that is, the SIL code is interpreted by the Executer and so controls its
operation. Thus SIL code is an intermediate representation of a SEMANOL
program.

The SIL formats were necessarily altered to reflect the changes that
were made in the SEMANOL metalanguage to create SEMANOL(76). However, two
additional types of changes were made so that greater processing efficiency
could be achieved and some simplification of the SIL realized. These changes
were made to the SIL format generated for semantic procedural definitions
and caused:
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1. Replacement of the parenthesized, LISP-1ike, control level structure
with a direct branching notation. The Executer's time to interpret
control transfers is substantially reduced by this modification.

This change also has the advantage that such direct transfers closely
correspond to the operations available in the procedural languages
(e.g., PL/1) into which we eventually hope to translate SEMANOL
programs. Thus the Translator was brought closer to being able to
generate executable code than it had been when producing the older
notation.

2. Simplification of the method by which semantic and procedural
definitions are activated by the Executer. The original method
was modeled upon one used in SNOBOL; it caused argument and local
variable names to be given global scope and so required the saving
of the old values upon entry to a definition and their restoration
upon exit. This generality was later found to be needless for
SEMANOL and existing argument values are no longer saved and restored.
Instead, arguments and local variables are referenced directly on
the Executer stack. The generated code was also reduced so that the
standard actions performed upon entering a semantic or proceduratl
; definition are now done automatically, using given parameters, rather
than being done in response to explicit SIL code generated for that
purpose. A reduction in interpretation overhead is thereby gained.
The combination of these changes has made the Executer processing
of semantic calls, a common activity when interpreting SEMANOL
programs, much more efficient.

It should be observed that these changes also resulted in reducing the
amount of SIL code produced; this reduction itself means that file space is
used more effectively, and that a reduction of input-output transmission time
is correspondingly achieved.
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An example may help to illustrate just what has been done and why
efficiency improvements have consequently been realized. For the SEMANOL
semantic definition given by

#DF LONGER(STRINGA,STRINGB)
=> STRINGA #IF #LENGTH(STRINGA) >= #LENGTH(STRINGB);
=» STRINGB #OTHERWISE #.

the original Translator would have generated the following SIL code:
LONGER/SIL=

(1) (2 IPARAM/OP LONGER/VAR LOCAL/OP

(2) STRINGA/VAR PARAM/OP STRINGB/VAR PARAM/OP FCALL/OP
(3) ((STRINGA/VAR CVSTS/OP ISLEN/OP CVI/OP STRINGB/VAR
(4) CVSTS/OP ISLEN/OP CVI/OP PLT/OP LNOT/OP

(5) KTRUE/OP STRINGA/VAR LONGER/VAR ASVAR/OP ENDIF/OP)
(6) (STRINGB/VAR LONGER/VAR ASVAR/OP ENDIF/OP))

(7) RET/OP) ;

In the new system, the Translator generates SIL code as follows:
LONGER/SIL=

(1) k28l

(3') 1/VAR CVSTS/OP ISLEN/OP CVI/OP 2/VAR
(4') CVSTS/OP ISLEN/OP CVI/OP PLT/OP LNOT/OP
(5') BFALSE/OP 3 1/VAR RET/OP

(6') 2/VAR RET/OP ] ;

(Note that SIL code is recorded as character strings since this form of
representation minimizes interface requirements between the Translator and
Executer programs, as well as otherwise aiding the development and checkout
process. The parenthesized 1ine numbers shown here are added for reference
purposes and do not appear in the SIL code.)
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The prologue of entry in the first case, lines (1) and (2), has been
replaced by (1'). In both cases, the number of actual input parameters will
be tested against the number expected, 2, but no longer is the IPARAM/OP
given as an explicit operation to be invoked. Some overhead is thus now by-
passed. Line (2) caused the old parameter values to be saved and the new ones
to be assigned to the global variable names; such action is no longer done.

: The body of the definition, lines (3) and (4), is essentially unchanged
although the references to arguments are now made directly, in line (3'), by
position in the argument 1ist (as held in the stack) rather than by global
formal parameter name. Lines (5) and (6) display a branch option that employs
the older, nested, control structure; a false result 2. KTRUE/OP will cause
interpretation control to skip to the next list (i.e., line (6)). In the new
method, a false result at BFALSE/OP causes a skip to the third entry that
follows the 3 (i.e., to line (6')). The resulting economy in interpretation
time is evident. It should be observed that while both SIL sequences end with
RET/OP's, the function of this operator was changed substantially. RET/OP
previously restored saved parameter values; it no longer does this. It was
also changed to return the value at the top of the stack rather than the

one assigned to the local variable having the name of the definition (LONGER
in this example); an assignment operation, ASVAR/OP, can thereby be avoided.
This is an efficiency gain that is not totally apparent in the SIL code itself.
The other operators used in this example were not changed.

e e

While the example demonstrates the advantage of direct branching with
conditional tests, it should be realized that similar savings are gained when
dealing with the code generated for SEMANOL(76) iterators.

Implementation of this new SIL format caused the code generation algorithms
of the Translator to be extensively rewritten, often in conjunction with
revisions being made otherwise for the new SEMANOL(76) features, and the main
; control loop of the Executer to be redone. Although the efficiency improve-
ment in the Executer resulting from these changes was not rigorously measured,
it was estimated that a two-fold reduction in processor time resulted from
using this new SIL format. Note that most Executer operator routines were
unaffected by the transition to this new intermediate form.
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Translator Improved - A major effort was devoted to rewriting the recursive
descent routines of the Translator. There is a recursive descent routine for
each production, or group of similar productions, of the qrammar of SEMANOL;
their role is to analyze the syntax of SEMANOL statements and to determine the
SIL code to be generated for each statement. These routines were, therefore,
revised because of (1) the changes in the SEMANOL metalanguage that were made
to create SEMANOL(76) and (2) the new SIL format that was introduced for better
efficiency. These changes were pervasive and all recursive descent routines
(there are about 50 of them) were revised. This revision was done with concern
for the efficiency of the recursive descent routines themselves. It was also
accompanied by a major improvement to the error messages produced and recovery
procedures followed. Thus the user's efficiency was also enhanced.

While code analysis had suggssted several areas in which improvements
were possible within the Translator, timing tests had not been conducted.
However, with Version 3.0 of Multics, it became easy to measure the relative
usage of the subroutines of a program. Thus testing was then done with a
SEMANOL(73) specification similar to the one of JOVIAL(J3) that was then
being written for this project. The results of this process revealed that
the lexical analyzer routines and the SIL output routines together used over
85% of the total execution time. Furthermore, one routine alone, SIL, used
40% of this time and another, SILPUT, used 26%. These two routines make use
of Fortran input-output, and it became clear that Fortran input-output was
much slower than had been imagined. While this general area was suspected
to be a cause of inefficiency, the magnitude of the actual inefficiency was
very surprising. Early attention was thus devoted to these two parts of
the Translator.

The lexical analyzer routines of the Translator, of which there are five,
scan SEMANOL statements and break them down into their constituent elements
(called tokens). This process involves character string analysis and manip-
ulation that in the original GCOS version of the Translator were done
conveniently with the DECODE/ENCODE operators of Fortran. With the conversion
to Multics Furtran, and the resulting absence of DECODE/ENCODE, the Translator
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was expeditiously altered to use formatted READ/WRITE operations in conjunction
with an intermediate file. This was the most convenient way in which to make
the conversion, but it was inefficient. These routines were thus revised in
this project so as to replace their use of Fortran input-output statements

with references to equivalent PL/1 routines. The PL/1 routines are able to
reference data directly, as based arrays, and to make use of the SUBSTRING
operator. This procedure is much more direct than one using Fortran formatted
input-output operations, and the resulting reduction in processor time for
lexical analysis was dramatic.

The (eight) SIL output generator routines are responsible for collecting
information and writing it on the SIL output file. In doing this, they hold
information destined for the SIL file internally and often reorganize it before
it is actually written on the SIL output file. This SIL information was |
stored internally by the Translator in text strings. In the original GCOS
version of the Translator, these internal SIL strings were manipulated in
storage by DECODE/ENCODE operators to produce the desired output format.

Since Multics Fortran lacked DECODE/ENCODE operators, the Translator was later
altered to use an intermediate external file and formatted READ/WRITE operations

to achieve the same result. This was the most convenient way in which to make

i the program conversion, but the use of an intermediate file made this process

slow. Therefore, efficiency was achieved by totally rewriting the SIL output
routines so that no intermediate file was used. The use of an internal

[ binary list representation, rather than character strings, for the SIL code

was implemented while the external characteristics of the routines were

retained. The binary data form can be manipulated in storage without recourse

to reading and writing Fortran files, and sc its handling is much faster.

However, the choice of a new data representation was so fundamental to the

operation of these routines that the code had to be entirely rewritten. '
Besides gaining greatly in efficiency, this new method yields a simpler design
and more understandable code.
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While these two sets of changes greatly improved Translator efficiency,
several other modifications 1ikewise had substantial efficiency benefits.
The first of these was the retention of source names in generated SIL code.
The Translator initially generated standardized names that were used in place
of the names given in the original SEMANOL source text. The generated names
then appeared in the SIL file passed to the Executer. The use of generated
names shortened the SIL file and simplified the Translator logic slightly;
however, the lack of SEMANOL source names during Executer processing
complicated the debugging of SEMANOL specifications. A program called
Tnames was then written as an independent program that restored the original
names to lines in the SIL file and so improved the debugging process. By
incorporating the function of Tnames in the Translator and deleting the
distinct Tnames program, overall system efficiency, structure, and operational
convenience were improved.

The Translator was also modified to use the recursive abilities of the
host Multics system. The Translator makes extensive use of recursive sub-
routine calls despite being written in Fortran. Since GCOS Fortran did not
support recursion (recursion normally not being intrinsic to Fortran compilers),
the Translator was written to provide its own form of recursion and so over-
come the normal Fortran failure to naturally support recursion. Recursion
was implemented through writing a routine that maintained a call stack and
the adoption of elaborate calling conventions used by any subroutine that
could be involved in a recursive call sequence. This implementation entailed
a substantial amount of bookkeeping, as well as imposing an intermediate call
to the stack routine into the call procedure for each recursive subroutine.
This procedure was not altered when the Translator was converted from GCOS
to Multics. However, Multics has a standard 1inkage that supports recursion,
and the linkage was generated then by the Multics Fortran compiler. Thus the
Translator was executing this linkage, but not making use of its recursive
abilities. This was corrected by modifying the Translator routines to make
direct recursive calls and by deleting the code then used to implement the
recursive conventions. Some 45 routines, each making several calls, were
involved, and the revision was thus a substantial one. Note that the form

28




—r————

of recursion now used should be readily transferable to other Fortran
systems.

After these changes were implemented, another profile of execution
time was obtained. This profile revealed that a token analysis routine was
taking much more time than seemed justified by its actions. While this
routine is very heavily used, the only apparent reason for its large
execution time was the overhead time involved in its subsidiary calls to
two other simple subroutines. Thus the calls were replaced by the bodies
of the subroutines, with a resulting 18% overall improvement in processing
time and perhaps a three-fold improvement in the token analysis routine
itself. This result argues against the use of small subroutines with
Multics, and this idea might well be extended to other parts of the Trans-
lator although the gains elsewhere would not be nearly so great as they
were in this case.

A limited amount of testing was undertaken in order that the performance
of the new Translator could be compared with that of the older version.
Such testing is very difficult since each TranslTator processes a different
dialect of the SEMANOL metalanguage, SEMANOL(73) or SEMANOL(76). The
metaprograms used for such tests must, therefore, be manually translated
from one metalanguage to the other so that the number of errors detected
in Translation can be similar in both cases (error treatment affecting
processing time). Because of this problem, our comparative timing analysis
was not comprehensive. Nevertheless, the results are striking and in
agreement with our programmer's subjective evaluation of relative performance.
They show a 20-fold improvement in processor time and a 30-fold improvement
in elapsed time. Such an improvement is embarrassingly great as it suggests
an especially poor initial implementation. However, much of the inefficiency
seems to have crept in when conversions were made to Multics, and to new
Fortran compilers, without much regard for efficiency. This choice was
deliberate, but the difficulty of measuring performance did result in our
underestimating the potential efficiency losses that were being incurred.
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It is believed that the new Translator is easier to understand, easier
to modify, and more machine independent than was the old. Its performance is
vastly better, and the translation speed is now about 1,200 SEMANOL(76)
lines per minute. This is a much improved product.

Executer Improved - The major change made for better Executer processing
efficiency was the implementation of the new SIL format already described.
The benefits of the new format were discussed there and largely were observed
to result from a more executable code structure that reduced decoding
overhead in the Executer. While the control interpretation loop necessarily
was totally rewritten, the operator routines ordinarily were changed only
to accommodate the changing semantics of the SEMANOL(76) metalanguage.
In general, there were few opportunities to rewrite Executer routines in
the exepectation of realizing substantial execution improvements. Nevertheless,
several other changes were made in pursuit of efficiency, and they are briefly
described in what follows.

A significant improvement in efficiency was obtained by changing the
way in which SIL code is stored internally by the Executer. In the prior
implementation, SIL code was intermixed with other data items and referenced
indirectly by the use of PL/1 access routines. SIL code is now stored
separately in its own array, and so can be referenced directly by Fortran
statements. Because the overhead incurred in calling PL/1 routines is
high, this new scheme is much faster than the old. This change also has
another efficiency benefit in that the garbage collection is now performed
more quickly. This benefit results from the fact that the SIL space is
no longer a part of the space subject to garbage collection; thus a smaller
area is now processed when reclaiming unused space.

The replacement of Fortran input-output routine usage also improved
the efficiency of the Executer, although not to the extent that it improved
Translator performance. The routines used here were modeled after those
implemented earlier for the Translator, so that PL/1 input-output is now
used. Note that the drastically revised SIL formats, both external and
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internal to the Executer, required that these routines be revised for the
new formats. Efficiency was enhanced as part of this process. We should
also note that some operatgor routines were improved. For instance, string
concatenation was improved through being changed to expedite a special
case occurring more often than originally expected, and initialization
was changed to eliminate usage of an external (code equivalence) file.

A general improvement was thus realized.

It should be pointed out that providing new operators in SEMANOL(76)
had a major influence in improving the efficiency of Executer processing.
This was especially true when using the new parse tree operators (e.g.,
#PARENT-NODE, #ROOT-NODE, #SEQUENCE-OF-ANCESTORS-OF). While equivalent
effects could be achieved in SEMANOL(73) by writing more complex expressions,
the built-in operators of SEMANOL(76) executed several times more quickly.
The built-in operators also made better use of working space and so reduced
the need for garbage collection. That is, the older expressions often
generated temporary structures as part of their evaluation process, while
the new operators do not. The efficiency of expression sought when creating
the SEMANOL(76) metalanguage also led to increased metaprogram execution
efficiency.

The net efficiency gains achieved in the Executer are difficult to
determine, and their source more troublesome yet to obtain. Our limited
comparison testing found factors ranging from a 50% improvement to over
a 400% factor; a subjective estimate of 50%-100% seems about right. This
clearly is a substantial improvement. It is especially significant when
one recalls that incremental translation and testing support options are
now available to Executer users; a great overall advance in efficiency
has thus been provided with the new Executer implementation.

Effective User Interface Implemented

The earlier Interpreter programming system, for SEMANOL(73), provided
only rudimentary operational facilities for its use and had no effective
metaprogram testing features. While it did offer a form of incremental
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translation, incremental translation required several manual steps and so was
inconvenient, and time consuming, to use. In order that the new SEMANOL(76)
Interpreter programming system might be made operationally more efficient
and provide greater convenience for the user, a comprehensive set of user
commands was designed and implemented in performance of this contract. The
new interface so provided improves user effectiveness, as we have seen in
our own metaprogram development.

To some degree, the user interface was shaped by the nature of the
host computer system; in this case, by *he nature of the Multics system.
Thus the user commands for the SEMANOL(76) Interpreter are themselves
implemented as Multics-level commands. That is, each user command is a
program name that is transformed into a program activation by the Multics
operating system. The result of this design is that SEMANOL(76) Interpreter
commands are consistent in structure and action with the other commands of
Multics. The commands |themselves provide the means by which the Interpreter
programming system can be used for simple processing, and by which the added
features of incremental translation and testing can be controlled. The
nature of incremental translation and testing control are explained in
what follows.

Incremental translation is essentially the same as what is called
"incremental compilation" in other systems. It provides a means by which
a metaprogram presently being processed by the Executer can be dynamically
modified. Incremental translation is invoked by commands during execution;
it causes user-supplied SEMANOL(76) metalanguage statements to be processed
by the Translator, as if part of the active metaprogram, and then merged
into the metaprogram being processed. Since only changed statements are
translated, rather than the entire metaprogram, computer processing time
can be reduced during a testing session. As the computational state at the
time of incremental translation is saved by the Executer, it is often
possible to continue the computation with the new metaprogram without
repeating the processing to the incremental translation point. Thus further
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time savings are possible. Since SEMANOL(76) metaprograms are often large,
since metaprogram interpretation is intrinsically rather slow, and since
processing is ordinarily done interactively from remote sites, the savings
provided by incremental transiation are very helpful.

Implementation of this incremental translation feature was straight-
forward. The Translator was modified to (optionally) save what is essentially
a symbol table when it first processes a SEMANOL(76) metaprogram; it is
then able to generate SIL code for isolated statements by reference to this
symbol table. The SIL code is thus compatible with the original program
context. The SIL code so generated is then read by the Executer and merged
into the current metaprogram. This merging is done on #DF or #PROC-DF name,
with the consequence that compiete semantic definitions are required. While
a form of incremental translation had been implemented earlier, this feature
was re-implemented as part of the general Translator improvement task; all the
Executer additions, plus the writing of the user command programs, were
done in the contract performance period.

The testing features represent the addition of an entirely new
capability, and all were reflected by modifications to the Executer program.
The new test features fall into two classes:

1. Trace features, that are provided so that control flow through a
SEMANOL(76) metaprogram can be followed. The trace provides a time-ordered
sequence of semantic definition (i.e., function) invocations and returns.

This trace can be directed to a file of the user's choice. The user is also
given wide control over the content of the trace through several commands that
permit naming the specific definitions to be traced and controlling whether
subsidiary definitions are traced or not. Trace volume, which can become
overwhelming, can thereby be restricted and the test process itself facilitated
since the user need investigate only trace information significant to the
immediate problem. The current trace status is always available to the

user. This is a generous tracing facility.




2. Break features, that are provided so that user interaction with
the running metaprogram can be obtained. The essential characteristic of
this feature is that the user can establish points within the metaprogram
at which processing will be suspended and control relinquished to the user.
The user can then interrogate the state of the computation or otherwise
interact with the running metaprogram. Break points are set on semantic
definitions, and can be easily established or removed by the user through
Executer action. Break point status is also readily available to the user.
The user action upon a break, apart from altering the break conditions
themselves, must be accomplished by the processing of SEMANOL(76) statements.
Such statements can be quickly introduced by use of the incremental trans-
lation feature, or initially included in the metaprogram to provide this run-
time support. This code is then executable upon user command at the break.
Thus the SEMANOL(76) metalanguage also serves as the language of user inter-
action. Associated with this break procedure is an interrupt option that
uses the escape mechanism of Multics to provide a user with the ability to
suspend Executer processing before the next semantic definition is inter-
preted. That is, a break is forced at the next convenient point in the meta-
program. A high degree of user control is thereby supplied.

In all, a series of twenty-one user commands was implemented during this
performance period. The command set provides the user with a convenient way
in which to direct the SEMANOL(76) Interpreter programming system, and makes
available an interactive test facility that corresponds closely to those avail-
able with the better conventioral programming language support systems. The
resulting effectiveness of SEMANOL(76) Interpreter users should thereby be
increased.

Training Course Presented

A training course, given the title "The SEMANOL(76) System of Programming
Language Specification", was presented at RADC in the three day period nf 24




May 1977 through 26 May 1977. The course consisted of two phases. Phase I
was designed for software managers and was meant to provide a general overview
of the SEMANOL(76) system and its possible applications. Phase II was
designed for software specialists and was meant to provide a technical found-
ation for those who might use the SEMANOL(76) system in the future.

The course content and method of presentation were given careful attention,
and extensive training materials were prepared by TRW. Eleven documents,
containing over 350 pages, were prepared and distributed to attendees. In
addition, over 300 vu-graphs were prepared and used in presenting the course.
Such comprehensive preparation naturally took much time and effort, but this
lengthy preparation enabled TRW to deliver an effective course. The course
content is discussed briefly in what follows.

Phase I began with a formal presentation that covered:
1. The Theory of SEMANOL(76). The theory was considered in an informal,
generally philosophical, manner rather than being given in rigorous
terms. (A formal view is available in published reports.)

2. The SEMANOL(76) Interpreter programming system. This description
dealt with the system in terms of its overall processing logic and
general utility.

3. The use of SEMANOL(76) in programming language control. The use of
a SEMANOL(76) specification as a standard definition was explained
in relationship to compiler acquisition, compiler testing, programming
language evaluation, change control, programming manual preparation,
etc.

The material upon which this presentation was based was made available
to attendees in a report called "An Introduction to SEMANOL" by P. T. Berning,
copies of the vu-graphs used, and reprints of the Acta Informatica paper
"SEMANOL(73): A Metalanguage for Programming Languages" written by E. R.
Anderson, F. C. Belz, and E. K. Blum.
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Phase I concluded with an on-line demonstration of the SEMANOL(76)
programming system running upon the Multics computer. The demonstration was
continuous throughout the afternoon, and so allowed course participants ample
opportunity for observing system operation and having questions answered.

Phase II immediately followed Phase I, and was conducted on the premise
that attendees were compiler writers, and others, who were familiar with formal
methods of syntax description and the problems of programming 1anguage
definition. Phase II was intended to give attendees sufficient understanding
of the SEMANOL(76) system so that they would be able to correctly interpret
SEMANOL(76) specifications, 1ike that for JOVIAL(J3), and to realize how the
SEMANOL(76) Interpreter programming system operates. There was no expectation
that they would become competent SEMANOL(76) programmers from receiving this
limited amount of instruction; the course was too short for that.

Phase II first introduced the SEMANOL(76) metalanguage. This introduction
explained the objects, functions, and relations of SEMANOL(76), and described
the different statements provided by the metalanguage. A detailed statement-
by-statement explanation was not attempted because of time factors, and because
it was felt that attendees could largely gain such knowledge from the SEMANOL
(76) Reference Manual by themselves. The explanation was illustrated by use
of a trivial formal specification so that some degree of concreteness could
be attained. Besides training materials that corresponded to the material
presented, a SEMANOL(76) Workbook was also distributed. This Workbook gave
many examples of metalanguage use and so provided suggestive illustrations of
the nature of the keywords of SEMANOL(76); it was arranged so that the Workbook
could be used as a simple self-teaching aid.

Following this introduction to the metalanguage, the SEMANOL(76) method
of semantic specification was presented through detailed explanations of a
series of specifications of simple programming languages. These languages
were based upon BASIC and invented by TRW to serve as tutorial languages.
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Complete formal specifications of these three languages were thoroughly
examined. In addition, a parse tree representation of a program in the
simplest of the tutorial languages was presented, as was the corresponding
trace of its interpretation. Thus the operational semantics of one sample
program were demonstrated very explicitly. This material was made available
to attendees, and should provide a useful basis for independent study of the
SEMANOL(76) method. This part of the course gave attendees a feeling for
the manner in which we believe formal specifications ought to be written.
This information is fundamental to SEMANOL(76) use, but is not covered in
the SEMANOL(76) Reference Manual (since it would be inappropriate there);
thus this part of the course should have been especially helpful.

Having talked about how SEMANOL(76) could treat simple languages, a
brief presentation about the JOVIAL(J3) specification prepared in performance
of this contract was given. Examples from the JOVIAL(J3) specification were
used to explain how SEMANOL(76) can specify the semantically awkward parts
of real-life programming languages. This examination of advanced topics was
necessarily somewhat cursory, but did permit time for dealing with specific
attendee questions. Handouts of the presented material were distributed.

The final part of the course offered a detailed description of the
SEMANOL(76) Interpreter programming system. This description briefly
discussed the internal structure of the software, and then concentrated
upon giving an explanation of how the programming system might be used.

It thus described the various user commands that have become available, with
special attention being devoted to explaining the user commands that are help-
ful when testing SEMANOL(76) metaprograms. A handout was distributed that
covered this same material. This session thus imparted some idea of how the
Interpreter programming system could be used in practice.

A11 course presentations were made using vu-graphs, and copies of this
material were generally made available to attendees (in addition to other
reports). Three TRW instructors participated in making the presentation,
and all were available throughout the three days for informal discussion
outside established course periods. This condition encouraged casual discuss-
ion and so helped insure that question§7were answered and course topics well




understood. We should observe that course attendees were themselves highly
competent people involved in programming language design and implementation,
and so possessed of the background that was being assumed. The net result
was a course that we think successfully gave its attendees an accurate
picture of the SEMANOL(76) system. It was thus a useful endeavor.




JOVIAL(J3) Specification Written

The JOVIAL(J3) specification written in performance of this project
attempts to provide a formal definition of the JOVIAL(J3) programming language
described in Air Force Manual No. 100-24 of 15 June 1967. Since AFM 100-24
is incomplete and imprecise, a considerable amount of analysis was performed
in order to decide how various unclear features of JOVIAL(J3) were to.be

treated. The resulting decisions were reflected in the delivered specification,

which must thus be recognized as one group's interpretation of AFM 100-24;
however, unlike AFM 100-24, it is an interpretation expressed in the formal
SEMANOL(76) metalanguage and therefore one that is very exactly stated. The
specification thus is a precise description of what we believe JOVIAL(J3) to
be.

It should be noted that this analysis was required despite TRW's earlier
work on a formal JOVIAL(J3) specification, in contract F30602-72-C-0047,
since that earlier work, being more research oriented, had ignored several
complicating aspects of JOVIAL(J3). In particular, compools and overlay were
disregarded in the first formal specification. Because of this, and because
of changes to the SEMANOL metalanguage and changes to TRW's semantic descrip-
tion style, the earlier specification was of little use in this project. The
JOVIAL(J3) specification written in this project managed to retain portions
of the earlier context-free grammar, but is otherwise an entirely new product.

The JOVIAL(J3) specification that was prepared is syntactically complete,
as the context-free grammar includes all the features of JOVIAL(J3), but is
semantically incomplete in that the execution effects of presets, the ALL
loop termination clause, and file input-output are not fully prescribed. In
addition, the context-sensitive constraints included in the specification do
not include all those conditions that are suggested in AFM 100-24. In part,
this stems from the fact that AFM 100-24 is often ambiguous with regard to
whether certain erroneous conditions are to be detected if they do not occur
during execution; that is, whether they are to be determined at compile time
or in execution. None of these missing features present special semantic
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description problems; their omission simply reflects our inability to prepare
a complete specification within the performance period.

The SEMANOL(76) metalanguage in which the JOVIAL(J3) specification is
written provides a formalized notation to be used for describing the syntax and
semantics of programming languages. The metalanguage, and certainly the under-
lying theory of semantics and the specification conventions used with SEMANOL-
(76), result in a programming language being described in operational, inter-
pretive, terms. Indeed, it is fair to think of the SEMANOL(76) metalanguage
as a programming language meant to be used in writing programs that are inter-
preters of source text strings of the language being defined. Since the
JOVIAL(J3) specification is such a program, it is described here largely in
its role as a computer program that processes JOVIAL(J3) program text.

As with any conventional document or computer program, the manner in
which the JOVIAL(J3) specification was written reflects a certain individualism,
even though constrained by conventions and the application of standardized
techniques. Hence, the JOVIAL(J3) "specification program" presented here is
certainly not the only one that could be allowed; nor is it likely to satisfy
all readers with regard to its readability. But it is the product of very
thorough analysis and thoughtful design, and so reflects our understanding of
the JOVIAL(J3) programming language that is intended by AFM 100-24.

The SEMANOL(76) description of JOVIAL(J3) is written as a prescription
of a sequence of processing steps that one can follow, for a potential
JOVIAL(J3) system (i.e., program, compools, and library) and input to the
system, in order to determine:

1. Whether the given system is a legal JOVIAL(J3) system.
2. The effect of executing a legal JOVIAL(J3) system upon its input.

Since the description is a metaprogram, the description assumes a certain
structure as shown in Figure 3. The left side of that diagram shows the
transformations which are made to the representation of the JOVIAL(J3) system
text as interpretation is performed. The central block diagram is a simple
flowchart showing the series of processing steps that the SEMANOL(76) meta-
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program describes. The right side of the diagram reflects the static structure
of the SEMANOL(76) metaprogram and the way in which the various parts of the
metaprogram are related to the operational steps. This specification structure
is considered in more detail in what follows.

The Declarations section of the specification of JOVIAL(J3) consists of
a single declaration identifying five SEMANOL(76) global variables. The two
of greatest importance are: (1) jovial-system, which takes as a value the
parse tree corresponding to the JOVIAL(J3) program text (and any associated
compools and 1ibrary routines), and (2) current-executable-unit, whose value
designates the active point in the interpretation of the JOVIAL(J3) program.
The role of these global variables will be explained in greater detail later.
Note that names drawn directly from the JOVIAL(J3) specification will be
underlined when they are first used in this report (e.g., jovial-system).

The commands section of the SEMANOL(76) metaprogram is composed of only
a few SEMANOL(76) commands. The commands themselves are similar to those of
conventional programming languages, especially with regqard to their control
aspects. Execution of the SEMANOL(76) metaprogram starts with the first
command of the Commands section. These commands then dafine the top-level
processing steps invoked in describing JOVIAL(J3); these steps are to:

1. Transform the JOVIAL(J3) program text to implement DEFINE sub-
stitutions and to remove possible syntactic ambiguities.

2. Parse the JOVIAL(J3) text to produce a context-free parse tree of
the candidate JOVIAL(J3) system.

3. Test the parse tree for violations of the context-sensitive
syntactic restrictions of JOVIAL(J3).

4. Perform interpretive execution of the JOVIAL(J3) system upon its
input.

The nature of these processing steps will be considered in most of the
remainder of this part of the report.
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The textual transformation step is required in order to eliminate
certain context-free ambiguities and to describe the effect of DEFINE
directives and their invocations. The context-free ambiguities are legal
constructions of JOVIAL(J3) whose existence interferes with the construction
of an unambiguous, semantically useful, grammar for the JOVIAL (J3) system.
Notable examples of this problem are hollerith and transmission-code constants.
For example, natural grammars for JOVIAL(J3) would allow the statement

AA = T0H(X)$BB=1H(X)$

to be parsed as either a single assignment statement or as two assignment
statements, since the value of the count field of the constant cannot be
used in context-free grammars to resolve the ambiguity. This problem is
solved in the SEMANOL(76) metaprogram by transforming the bracketing paren-
theses of each such constant into unique delimiters not allowed within the
constant text itself. This transformation is defined in terms of the string
operations of SEMANOL(76). These troublesome constructions are thus changed
into forms that can be naturally defined in a context-free grammar.

DEFINE directives and their invocations are a form of macro definition
and macro call, which again are difficult to incorporate into a semantically
useful context-free grammar for JOVIAL(J3). Therefore, another transformation
step is included in the metaprogram which effects all DEFINE substitutions.
The text is first parsed with respect to a lexical (token) grammar that
appears as the Lexical Syntax in the context-free syntax section of the
specification. The resulting parse tree's principal structures are nodes
representing tokens and the gaps (of blanks) between tokens. The SEMANOL(76)
sequence construction operators are then used to form a sequence of the token
and gap nodes in the tree. The nodes of this sequence are scanned, left-to-
right, and a new sequence of token and gap nodes is formed in which each token
corresponding to a DEFINE invocation is replaced by its expansion. The
second sequence is then converted back to a string, which is the original
text as revised by the DEFINE substitutions. In total, these two sets of
transformations produce a string that is consistent with a natural context-
free grammar; they are defined in the Lexical Analysis part of the specification.
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Following the textual alterations, the transformed program text is

g parsed. This parse process is invoked by the SEMANOL(76) operator #CONTEXT-

F FREE-PARSE-TREE and is directed by the jovial-j3-system grammar given in the

| Main Syntax section of the specification. The product of this operation is

a parse tree representation of the JOVIAL(J3) system, or possibly an error

condition if the grammar can lead to more than one parse of the agiven text !
(i.e., the grammar is ambiguous) or if the text cannot be parsed. The parsed !
representation reveals the structure of the system and so is a convenient |
basis upon which to formulate the later semantic description. The lexically

transformed text itself is retained as the terminal leaves of the parse tree.

The SEMANOL(76) syntactic definitions used to define the grammar look q
much like the productions of the usual treatments of such programming
language grammars. For instance, the following is a part of the main grammar
of JOVIAL(J3):

‘ #DF program => <start-statement><gap><statement-list> 1
‘ <gap><term-statement>#.

#DF statement-list => <statement-list-element>
<%<<gapr<statement-list-element>>>#.

#DF statement-list-element =% xstatement>#U<declaration>#U<directive>#.

#DF gap => <#GAP>
=3 <#GAP><special-separators><#GAP>#.

This grammar defines a program as beginning with a start-statement, |
ending with a term-statement, and containing at least one statement, declara-
tion, or directive. The #GAP keyword designates strings of zero or more
blanks, with the condition that one blank is required between alphamerics
to the left and right. The % designates zero or more occurrences of gap,
statement-list-element pairs. Note that gap may include separators, which
are later defined to include comments, as well as blanks.




The parse tree representation produced by this step is assigned to
the SEMANOL(76) global variable jovial-system. Since no other assignment is
made to this variable, subsequent processing steps may use the SEMANOL(76)
name jovial-system as a constant identifier for the tree.

The next processing step is the imposition of syntactic restrictions
that cannot be expressed in a context-free grammar. That is, not all systems
that can be parsed using the context-free grammar are legal JOVIAL(J3)
systems. It is the intent of this section of the specification to provide
an operational algorithm to detect such illegal programs before an attempt is
made to interpret them. Since the application of these tests is made before
interpretation proper, they can cause the rejection of programs that could be
interpreted without encountering the error condition. That is, these tests
correspond to those that a compiler might make and the consequences can be
semantically different than if similar tests were applied at execution time.

In the JOVIAL(J3) specification, tests are made to insure that go-to
designators are names appearing on statements, programs, closes, or switches;
that RETURN appears only in procedure declarations; that loop variables are
distinct; that ODD modifiers are not applied to floating variables; etc.
These tests make use of the sequence operators of SEMANOL(76) and the #THERE-
EXISTS iterator in their formulation; they appear under the title Context
Sensitive Checks in the specification.

The process of interpretively executing the JOVIAL(J3) system is
itself subdivided into the distinct elements shown in Figure 4. The first
step in this process to establish the sequence-of-executable-units-in
the JOVIAL(J3) program. Each executable unit is defined by the context-free
grammar so as to be a node in the parse tree for the program, and each is
associated with a specific execution event. In JOVIAL(J3), the executable
units are chosen at a very fine level of detail since nodes for every variable
reference and operation are included as well as nodes for pure control events,
such as jumps. This fine level is needed so that abnormal returns, which
can interrupt expression evaluation, can be described conveniently (i.e.,
it is a way to specify a semantically awkward element of JOVIAL(J3)).
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Although the level of detail is very low, the construction of the sequence-
of-executable-units~-in is specified in a hierarchical manner. First, the
executable statements are identified, then the portions of these statements
which have executable units, and finally the executable units themselves.

Note that, for JOVIAL(J3), this means execution semantics tend to be specified
at something less than the statement level, but that the hierarchical decom-
position used here makes the relationships clear.

The next step of interpretive execution is locating the unit at which
JOVIAL(J3) program execution is to start; this is the first executable unit
in the statement designated in the term-statement of the JOVIAL(J3) program,
if one is so designated, or is otherwise the first unit of the sequence-of-
executable-units-in the program. This node is then assigned to the SEMANOL(76)
global variable current-executable-unit. At any future point in the
interpretation of the JOVIAL(J3) system, this global variable serves to identify
the active point in the JOVIAL(J3) system, and transitions of control are
specified as changes in this value. Thus the variable current-executable-
unit serves a function analogous to that of the instruction counter of a
conventional computer except that, in this case, control is defined in terms
of the program text, rather than in terms of a machine storage structure.
Once the starting executable unit is assigned to current-executable-unit,
the preliminary steps are compieted and execution proper may begin.

The body of interpretive execution is accomplished within a high level
control loop. In this loop, (1) the effect of executing the current-execut-
able-unit is described and (2) a successor to the current-executable-unit
is determined and made the new current-executable-unit. The loop is
terminated, for example, when the current-executable-unit is a node whose
associated effect is to halt the computation, as with the STOP statement of
JOVIAL(J3). In this case, the control loop is ended normally with #COMPUTE!
#STOP.




s

Supporting this control loop are evaluation semantics that apply to
executable units, called evaluation units, corresponding to the operations
and primitive operands of JOVIAL(J3) expressions. For instance, the parse
tree for the subexpression "AA+BB" contains three evaluation units: one
<sum> node, node i, and two xsimple-variable> nodes, node j and node k,
representing "AA" and "BB" respectively (See Figure 5). These nodes appear
in the sequence-of-executable-units-in postorder, or operator postfix order;
thus the operand nodes for "AA" and "BB" are followed by the operator <sum>
node. The semantic selector definitions, such as operandl-of and operand2-

of ,  define the relationships among these nodes; so node j is operandl-of

node i and node k is operand2-of node i in the sequence-of-executable-units-
in. Associated with each evaluation unit is a unique SEMANOL(76) global
variable which receives the result of evaluating that unit. These
evaluation unit variables permit ready interruption of expression evaluation
as may be required when modeling abnormal returns.

Evaluation of the <sums, node i, then proceeds as follows: the latest
value of the unique variable associated with operandl-of node i is added to
the latest value associated with operand2-of node i, and the result value is
assigned to the unique variable associated with node i. The precise meaning
of this addition is determined by the type of the <sum> node, which in turn
depends upon the types of its operands. If the <sum> node is of fixed or
integer type, then the meaning of addition also depends upon the attributes
associated with each relevant evaluation unit. The derivations of type and
attributes are thus defined for each class of evaluation unit. The attributes
are represented by a sequence of three integers for the numbers of integer
bits, fractional bits, and minimal bits that apply to the value of the
evaluation unit.

The values for the numeric evaluation units are kept in implementation
numeric form, and the operations, such as addition, that produce numeric
result values from numeric operand values, are implementation defined
operations which take implementation numeric form values as arguments. In
the case of fixed point operations, the attributes of both operands and the
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result are also arguments of the implementation defined operation definitions.
The operation definitions in this specification rely on a model of arithmetic
based upon the HIS-6180 computer. Two's complement, 36-bit, integer and
floating point values are manipulated by operations which are similar to
those of the HIS-6180, except that exceptional conditions, such as overflow,
are not treated as error conditions; rather, precisely defined (though
arbitrary) values are produced as results. Note that this treatment of
numeric representations and operations, as implementation dependencies,
differs from that of AFM 100-24 fvhich assumes a sign magnitude arithmetic).
The SEMANOL(76) specification thus mirrors actual practice.

The semantic definitions defining evaluation units are collected together
under the title Evaluation Units, those defining the evaluation processing
steps under the title Evaluation, those defining types and attributes under
those same titles, and those defining the numeric operations under the title
Implementation Parameters.

The semantics of storage modeling are given by the definitions of assign-
ment and retrieval and these, in turn, depend upon subsidiary definitions of
storage allocation. These definitions are required to be at a very fine level
of detail for JOVIAL(J3). Indeed, the semantics of overlay, the LOC function,
and the BIT and BYTE functional modifiers require that variables be defined in
terms of an underlying linear array of words of bits. The detailed semantics
are thus meant to be defined by each implementation. In providing an oper-
ational specification in SEMANOL(76), we have necessarily written a
characteristic implementation. This low level of defining detail has caused
JOVIAL(J3) variable storage to be defined in terms of SEMANOL(76) decimal
integer addresses. The value of each address is a string bits-per-word
long of binary digits. Semantic definitions employing the SEMANOL(76)
key words #LATEST-VALUE and #ASSIGN-LATEST-VALUE are then used to alter
or recall this value of a given address. In short, a conventional computer,
non-abstract, storage model must be used as the basis for describing storage
related semantics of JOVIAL(J3).
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At the highest level of abstraction, each variable reference in the
JOVIAL(J3) program is associated with a standard-reference-address. Every
JOVIAL(J3) assignment is then accomplished by a generalized-assign-latest-
value function, which takes a value and a standard-reference-address as
arguments. Similarly, generalized-latest-value, when applied to a standard-
reference-address, yields a value from JOVIAL(J3) storage. Both of these
operations can be thought of as abstract operations in the absence of an
interest in any explicit or implicit overlaying affecting the referenced
variable. However, in the case of overlaying, it is necessary to consider
the detailed definitions of these operations (which appear under the title
Gereralized Assign). Both operations apply the field-descriptor-sequence-
implied-in operator to the standard-reference-address to obtain a sequence of
field descriptors; each field descriptor is itself a sequence of three
integers identifying a word-address, a bit location, and a field length.
Taken together, the series of fields so described defines the total storage
area allotted to the variable, and does so in a way that permits the non-
contiguous storage allocation that is needed for JOVIAL(J3). Each field
descriptor is then given to low level definitions for alteration or extraction

of a particular field in a particular word. Thus, eventually, the semantics
of JOVIAL(J3) variables are given in terms of a sequence of fields within words.

As observed, any definition of a standard-reference-address is inherently
an implementation defined feature of JOVIAL(J3). In the implementation
modeled by this specification, library routines are modeled, as well as
compools with common blocks. In the SEMANOL(76) specification, nodes represent-
ing the library subprograms, the common blocks, and the JOVIAL(J3) program are
used to designate these independent addressing units. These are collected in
a sequence in a given order, which can easily be permuted to correspond to
an alternate implementation, and allocated as blocks in JOVIAL(J3) memory so
that the spaces do not overlap.

Within addressing units, variable addresses are formed in terms of an
address relative to the start of the addressing unit of which the variable
is a part. (Note that only the word-address part of these addresses actually
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varies in the transformations to be described.) Within an addressing unit,
variable references may be made to variables for which space is to be a
allocated or not. Variables for which space is to be allocated include non-
overlaying simple items, tables, and loop variables. Variables for which
space is not to be allocated include table items and overlaying simple items
and tables; in these cases, related variable references will cause space to
be reserved. Thus if a name satisfies is-prime-overlay-initiator (i.e.,

the name is the first variable name mentioned in a collection of related over-
lay declarations), it reserves space for the entire overlay block. In the
SEMANOL(76) specification, nodes representing the declaring occurence of the
names of variables for which space will be allocated are collected in a
sequence, and are then given relative addresses (in order) in a manner which
guarantees that their spaces do not overlap.

Then every allocated variable reference takes its relative address to be
that of its declaring occurrence. For every overlaying simple item or table
reference, the process of determining relative addresses is carried a step
further so that relative addressing within the block is done. That is,
addresses are computed relative to the start of the enclosing overlay block.
Similarly, table items are given addresses relative to the entry of which
they are a part. Then for a reference to a table item, the entry relative
address is modified by the index-offset, computed from the index in the
reference, and further modified by the standard-reference-address of the
table containing the roference table item. Relative addresses are thereby
made absolute so that JOVIAL(J3) storage may be accessed.

Note that a relative address or a standard-reference-address have a
similar representation. This representation is as a sequence of three
elements: a field-descriptor for the first field of the variable (as described
earlier), a next field descriptor, and a count of the number-of-bits in the
variable. The next field descriptor provides the information needed to step
through the fields of the variable, while the bit count simply defines the
variable extent. This information can be used to construct the field-
descriptor sequence, and otherwise used to derive information about where a




variable is located in JOVIAL(J3) storage. The descriptions of address
derivation are found in the specification sections called Standard Ref Addr,
Relative Addresses, Addressing Units, and Addr Unit Addresses.

In all references to variables, it is important to establish the
declaration-for the variable actually being referenced. This, of course,
depends upon the scope rules for JOVIAL(J3), and these are included in the
SEMANOL(76) specification by an implicit sequence of scoping contexts that
control the search for the desired declaration. For instance, in order to
find the declaration-for a variable name in a procedure declaration of a
JOVIAL(J3) program: first the body of the procedure declaration is searched,
then the body of the JOVIAL(J3) program, then the comprols referenced in the
control input of the program and, finally, a defaults context in which the
system default mode-directive and system default REM and REMQUO definitions
are given. The semantic definitions for this declaration determination are
given under the titles Scoping Contexts and Names.

Some elements of control semantics have already been discussed in
describing the methods by which the executable units are distinguished and
by which the executable unit at which JOVIAL(J3) program execution starts is
selected. More control details are then given in successor functions for the
various classes of executable units of JOVIAL(J3); these appear in the Control
section of the specification. Control in JOVIAL(J3) poses a difficult semantic
description problem because programmer defined functions can employ "abnormal
returns"; i.e., precipitous termination of their computation followed by an
abrupt change in the flow of control to a JOVIAL(J3) statement other than
the one containing the aborted function call. The problem is that evaluation,
which is ordinarily considered a process which once begun would always
complete, has become something that can be interrupted at almost any point.

There are two basic possible solutions to the problem: (1) provide a
metalanguage exception handling facility to be employed in this circumstance
or (2) write the specification so that every evaluation step is guaranteed to
complete once it has begun. Prior versions of the SEMANOL metalanguage did
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have such an exception handling facility in the #RESUME(;n) primitive;
however, as noted previously, this feature was removed from SEMANOL(76)
because of the difficulty of clearly describing it. Without this exception
handling primitive, it becomes necessary to insure completion of every
evaluation step. This could have been done by creating special exception
flags, and providing tests of the flags in each subsidiary definition to
allow partial evaluation of the metalanguage definitions. This option W
appeared cumbersome in practice and so was rejected. The accepted approach 1
was thus to have non-interruptable executable units. 1

_ In the SEMANOL(76) specification of JOVIAL(J3), the mesh of executable
5 units is very fine in that each operator and primitive operand is treated as
E an executable unit. The intermediate results of every operation are then

held in special variables associated with these evaluation units. With this
approach, an abnormal return can be described as easily as can other control
transfers of JOVIAL(J3).

The entire delivered JOVIAL(J3) specification was processed without
error message by the SEMANOL(76) Translator program and, therefore; each
command, semantic definition, and syntax definition is syntactically correct;
all referenced procedures, definitions, and variables are defined; no name
is multiply defined; etc. In effect, the specification contains no errors
of the kind that compilers ordinarily can detect. However, interpretive :
execution testing, using JOVIAL(J3) programs, could not be comprehensively
conducted because of a lack of time. The context-free grammar was carefully
£ tested. The semantics of control were tested thoroughly, using prototype
skeleton versions of evaluation and assignment, as were integer and fixed
point evaluation semantics. The lexical transformations were also well
tested. Storage modeling (i.e., assignment and allocation) was not tested
in its final version, and this was the major defect in the testing process
that was conducted. These facts should be remembered when reading the
delivered specification.
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It should be noted that SEMANOL(76) is a rarity in that it is a semantic
description method that permits specifications to be thoroughly machine
tested. At best, most other formal methods seem to allow only compiler-like
testing to be done (although this feature is not ordinarily implemented for
systems other than SEMANOL(76). Thus, while testing was less complete that
we would have liked, it still has produced a much sounder product than would
be 1ikely with a non-operational method.
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CONCLUSIONS AND RECOMMENDATIONS

The improvements made to the SEMANOL system in performance of this
contract have produced a system that is suitable for practical applications
in programming language development and control. This has been achieved by:

1. Improving the metalanguage, to create SEMANOL(76), so that the
economy and clarity of expression possible with its use can be
enhanced. A more efficient notation, for both people and computer
processing, has thereby been realized.

{ 2. Improving the processing efficiency of the Interpreter program so
that its speed now seems adequate for developing and testing
specification metaprograms.

3. Improving the user interface with the operational system, so that the
Interpreter is now convenient to use, offers a wide range of user
commands, and includes a comprehensive interactive metaprogram testing
facility.

The usefulness of the system is thus substantially better than it had been.

The training course, while helpful to those who attended it, has a more
enduring value as well since the materials developed for that course can
serve as the basis for the more extensive training program that must accompany
any effort to use SEMANOL(76) more widely. The SEMANOL(76) specification of
JOVIAL(J3) demonstrates the capability of SEMANOL(76) to fully describe a
typical programming language; it also provides a basis from which a formal
accepted standard for JOVIAL(J3) could be developed.

Further improvements to the SEMANOL(76) system remain possible and ought
to be considered. Processing efficiency can certainly be bettered still more
by essentially moving in the direction of an implementation using compilation
instead of interpretation. In such a implementation, the Translator would

56




r‘r e — . s s s _va_,_,‘gmmm-“

o

generate "executable" code (perhaps in PL/1), while the interpretive
control functions of the Executer would be removed (although much of the
run-time support of the Executer would be retained). The new SIL format is
already a step in this direction, as were other changes made to the
Translator. An incremental approach is envisioned, since existing Executer
routines can be replaced by Translator generated code on a continuing basis
as the expected execution benefits of replacing any given routine are found
to justify the replacement.

TR

The preparation of a more extensive training course and tutorial
materials is also an area in which further work is appropriate; the
availability of the current materials will aid in this effort. Future

: development of formal specifications should be done for any language over
which active control is to be exercised; unfortunately, it does not seem
that JOVIAL(J3) is a likely candidate programming language for such control.
The SEMANOL(76) metalanguage should be subjected to continuing evaluation,
especially by the new users, even though the #RESUME(;n) feature is the only
major element of the metalanguage that we feel warrants reconsideration.

While the current SEMANOL(76) system is a useful one, further develop-
ment can make it more attractive yet and insure its suitability for Air
Force applications of formal specification methods.
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MISSION
of
Rome Air Development Center

RADC plans and conducts research, exploratory and advanced
development programs in_command, control, and communications
(c3) activities, and in the ¢3 areas of information sciences
and intelligence. The principal technical mission areas
are commnications, electromagnetic guidance and control,
surveillance of ground and aerospace objects, intelligence
data collection and handling, information system technology,
ionospheric propagation, solid state sciences, microwave
physics and electronic reliability, maintainability and

compatibility.
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